Home
Accelerating Discovery: Mining Unstructured Information for Hypothesis Generation
Loading Inventory...
Barnes and Noble
Accelerating Discovery: Mining Unstructured Information for Hypothesis Generation
Current price: $59.95
Barnes and Noble
Accelerating Discovery: Mining Unstructured Information for Hypothesis Generation
Current price: $59.95
Loading Inventory...
Size: OS
*Product Information may vary - to confirm product availability, pricing, and additional information please contact Barnes and Noble
Unstructured Mining Approaches to Solve Complex Scientific Problems
As the volume of scientific data and literature increases exponentially, scientists need more powerful tools and methods to process and synthesize information and to formulate new hypotheses that are most likely to be both true and important.
Accelerating Discovery: Mining Unstructured Information for Hypothesis Generation
describes a novel approach to scientific research that uses unstructured data analysis as a generative tool for new hypotheses.
The author develops a systematic process for leveraging heterogeneous structured and unstructured data sources, data mining, and computational architectures to make the discovery process faster and more effective. This process accelerates human creativity by allowing scientists and inventors to more readily analyze and comprehend the space of possibilities, compare alternatives, and discover entirely new approaches.
Encompassing systematic and practical perspectives, the book provides the necessary motivation and strategies as well as a heterogeneous set of comprehensive, illustrative examples. It reveals the importance of heterogeneous data analytics in aiding scientific discoveries and furthers data science as a discipline.
As the volume of scientific data and literature increases exponentially, scientists need more powerful tools and methods to process and synthesize information and to formulate new hypotheses that are most likely to be both true and important.
Accelerating Discovery: Mining Unstructured Information for Hypothesis Generation
describes a novel approach to scientific research that uses unstructured data analysis as a generative tool for new hypotheses.
The author develops a systematic process for leveraging heterogeneous structured and unstructured data sources, data mining, and computational architectures to make the discovery process faster and more effective. This process accelerates human creativity by allowing scientists and inventors to more readily analyze and comprehend the space of possibilities, compare alternatives, and discover entirely new approaches.
Encompassing systematic and practical perspectives, the book provides the necessary motivation and strategies as well as a heterogeneous set of comprehensive, illustrative examples. It reveals the importance of heterogeneous data analytics in aiding scientific discoveries and furthers data science as a discipline.