The following text field will produce suggestions that follow it as you type.

Loading Inventory...

Barnes and Noble

Efficient Algorithms for Listing Combinatorial Structures

Current price: $46.99
Efficient Algorithms for Listing Combinatorial Structures
Efficient Algorithms for Listing Combinatorial Structures

Barnes and Noble

Efficient Algorithms for Listing Combinatorial Structures

Current price: $46.99
Loading Inventory...

Size: OS

Visit retailer's website
*Product Information may vary - to confirm product availability, pricing, and additional information please contact Barnes and Noble
This thesis is concerned with the design of efficient algorithms for listing combinatorial structures. The research described here gives some answers to the following questions: which families of combinatorial structures have fast computer algorithms for listing their members, What general methods are useful for listing combinatorial structures, How can these be applied to those families that are of interest to theoretical computer scientists and combinatorialists? Among those families considered are unlabeled graphs, first-order one properties, Hamiltonian graphs, graphs with cliques of specified order, and k-colorable graphs. Some related work is also included that compares the listing problem with the difficulty of solving the existence problem, the construction problem, the random sampling problem, and the counting problem. In particular, the difficulty of evaluating Polya's cycle polynomial is demonstrated.

More About Barnes and Noble at MarketFair Shoppes

Barnes & Noble does business -- big business -- by the book. As the #1 bookseller in the US, it operates about 720 Barnes & Noble superstores (selling books, music, movies, and gifts) throughout all 50 US states and Washington, DC. The stores are typically 10,000 to 60,000 sq. ft. and stock between 60,000 and 200,000 book titles. Many of its locations contain Starbucks cafes, as well as music departments that carry more than 30,000 titles.

Powered by Adeptmind