Home
Ionotropic Cross-Linking of Biopolymers: Applications Drug Delivery
Loading Inventory...
Barnes and Noble
Ionotropic Cross-Linking of Biopolymers: Applications Drug Delivery
Current price: $270.00
Barnes and Noble
Ionotropic Cross-Linking of Biopolymers: Applications Drug Delivery
Current price: $270.00
Loading Inventory...
Size: Paperback
*Product Information may vary - to confirm product availability, pricing, and additional information please contact Barnes and Noble
Ionotropic Cross-Linking of Biopolymers: Applications in Drug Delivery
provides in-depth insights and presents the latest advances in ionotropic cross-linked biopolymeric systems for drug delivery and related applications. Sections introduce the fundamentals of ionotropic cross-linking of biopolymers, including mechanisms, chemistry, cross-linking methods and gelation. Additional content delves into ionotropically cross-linked biopolymers based on a range of sources, including alginate, pectinate, carboxymethyl cellulose, gellan gum, chitosan, carboxymethylated gums, plant polysaccharide blends, and synthetic polymer blends. This is followed by a section focusing on ionotropically cross-linked biopolymeric systems, such as polymeric nanoparticles, microparticles, beads, and reinforced matrices.
The last part of the book explores specific advanced drug delivery applications, before considering future opportunities and challenges in the field. This is a valuable resource for researchers and advanced students across polymer science, biomaterials, biomedicine, pharmaceutics, biotechnology, and chemistry, as well as scientists and R&D personnel working in pharmacy, drug delivery, and materials for biomedicine.
provides in-depth insights and presents the latest advances in ionotropic cross-linked biopolymeric systems for drug delivery and related applications. Sections introduce the fundamentals of ionotropic cross-linking of biopolymers, including mechanisms, chemistry, cross-linking methods and gelation. Additional content delves into ionotropically cross-linked biopolymers based on a range of sources, including alginate, pectinate, carboxymethyl cellulose, gellan gum, chitosan, carboxymethylated gums, plant polysaccharide blends, and synthetic polymer blends. This is followed by a section focusing on ionotropically cross-linked biopolymeric systems, such as polymeric nanoparticles, microparticles, beads, and reinforced matrices.
The last part of the book explores specific advanced drug delivery applications, before considering future opportunities and challenges in the field. This is a valuable resource for researchers and advanced students across polymer science, biomaterials, biomedicine, pharmaceutics, biotechnology, and chemistry, as well as scientists and R&D personnel working in pharmacy, drug delivery, and materials for biomedicine.