Home
Stochastic Computing: Techniques and Applications
Loading Inventory...
Barnes and Noble
Stochastic Computing: Techniques and Applications
Current price: $99.99
Barnes and Noble
Stochastic Computing: Techniques and Applications
Current price: $99.99
Loading Inventory...
Size: OS
*Product Information may vary - to confirm product availability, pricing, and additional information please contact Barnes and Noble
This book covers the history and recent developments of shastic computing. Shastic computing (SC) was first introduced in the 1960s for logic circuit design, but its origin can be traced back to von Neumann's work on probabilistic logic. In SC, real numbers are encoded by random binary bit streams, and information is carried on the statistics of the binary streams. SC offers advantages such as hardware simplicity and fault tolerance. Its promise in data processing has been shown in applications including neural computation, decoding of error-correcting codes, image processing, spectral transforms and reliability analysis.
There are three main parts to this book. The first part, comprising Chapters 1 and 2, provides a history of the technical developments in shastic computing and a tutorial overview of the field for both novice and seasoned shastic computing researchers. In the second part, comprising Chapters 3 to 8, we review both well-established and emerging design approaches for shastic computing systems, with a focus on accuracy, correlation, sequence generation, and synthesis. The last part, comprising Chapters 9 and 10, provides insights into applications in machine learning and error-control coding.
There are three main parts to this book. The first part, comprising Chapters 1 and 2, provides a history of the technical developments in shastic computing and a tutorial overview of the field for both novice and seasoned shastic computing researchers. In the second part, comprising Chapters 3 to 8, we review both well-established and emerging design approaches for shastic computing systems, with a focus on accuracy, correlation, sequence generation, and synthesis. The last part, comprising Chapters 9 and 10, provides insights into applications in machine learning and error-control coding.