The following text field will produce suggestions that follow it as you type.

Loading Inventory...

Barnes and Noble

Theory Of Groups And Symmetries: Representations Of Groups And Lie Algebras, Applications

Current price: $178.00
Theory Of Groups And Symmetries: Representations Of Groups And Lie Algebras, Applications
Theory Of Groups And Symmetries: Representations Of Groups And Lie Algebras, Applications

Barnes and Noble

Theory Of Groups And Symmetries: Representations Of Groups And Lie Algebras, Applications

Current price: $178.00
Loading Inventory...

Size: OS

Visit retailer's website
*Product Information may vary - to confirm product availability, pricing, and additional information please contact Barnes and Noble
This book is a sequel to the book by the same authors entitled Theory of Groups and Symmetries: Finite Groups, Lie Groups, and Lie Algebras.The presentation begins with the Dirac notation, which is illustrated by boson and fermion oscillator algebras and also Grassmann algebra. Then detailed account of finite-dimensional representations of groups SL(2, C) and SU(2) and their Lie algebras is presented. The general theory of finite-dimensional irreducible representations of simple Lie algebras based on the construction of highest weight representations is given. The classification of all finite-dimensional irreducible representations of the Lie algebras of the classical series sℓ(n, C), so(n, C) and sp(2r, C) is exposed.Finite-dimensional irreducible representations of linear groups SL(N, C) and their compact forms SU(N) are constructed on the basis of the Schur-Weyl duality. A special role here is played by the theory of representations of the symmetric group algebra C[Sr] (Schur-Frobenius theory, Okounkov-Vershik approach), based on combinatorics of Young diagrams and Young tableaux. Similar construction is given for pseudo-orthogonal groups O(p, q) and SO(p, q), including Lorentz groups O(1, N-1) and SO(1, N-1), and their Lie algebras, as well as symplectic groups Sp(p, q). The representation theory of Brauer algebra (centralizer algebra of SO(p, q) and Sp(p, q) groups in tensor representations) is discussed.Finally, the covering groups Spin(p, q) for pseudo-orthogonal groups SO↑(p, q) are studied. For this purpose, Clifford algebras in spaces Rp, q are introduced and representations of these algebras are discussed.

More About Barnes and Noble at MarketFair Shoppes

Barnes & Noble does business -- big business -- by the book. As the #1 bookseller in the US, it operates about 720 Barnes & Noble superstores (selling books, music, movies, and gifts) throughout all 50 US states and Washington, DC. The stores are typically 10,000 to 60,000 sq. ft. and stock between 60,000 and 200,000 book titles. Many of its locations contain Starbucks cafes, as well as music departments that carry more than 30,000 titles.

Powered by Adeptmind