Home
Wind Turbine Icing Physics and Anti-/De-Icing Technology
Loading Inventory...
Barnes and Noble
Wind Turbine Icing Physics and Anti-/De-Icing Technology
Current price: $165.00
Barnes and Noble
Wind Turbine Icing Physics and Anti-/De-Icing Technology
Current price: $165.00
Loading Inventory...
Size: Paperback
*Product Information may vary - to confirm product availability, pricing, and additional information please contact Barnes and Noble
Wind Turbine Icing Physics and Anti-/De-Icing Technology
gives a comprehensive update of research on the underlying physics pertinent to wind turbine icing and the development of various effective and robust anti-/de-icing technology for wind turbine icing mitigation. The book introduces the most recent research results derived from both laboratory studies and field experiments. Specifically, the research results based on field measurement campaigns to quantify the characteristics of the ice structures accreted over the blades surfaces of utility-scale wind turbines by using a Supervisory Control and Data Acquisition (SCADA) system and an Unmanned-Aerial-Vehicle (UAV) equipped with a high-resolution digital camera are also introduced.
In addition, comprehensive lab experimental studies are explored, along with a suite of advanced flow diagnostic techniques, a detailed overview of the improvements, and the advantages and disadvantages of state-of-the-art ice mitigation strategies. This new addition to the Wind Energy Engineering series will be useful to all researchers and industry professionals who address icing issues through testing, research and industrial innovation.
gives a comprehensive update of research on the underlying physics pertinent to wind turbine icing and the development of various effective and robust anti-/de-icing technology for wind turbine icing mitigation. The book introduces the most recent research results derived from both laboratory studies and field experiments. Specifically, the research results based on field measurement campaigns to quantify the characteristics of the ice structures accreted over the blades surfaces of utility-scale wind turbines by using a Supervisory Control and Data Acquisition (SCADA) system and an Unmanned-Aerial-Vehicle (UAV) equipped with a high-resolution digital camera are also introduced.
In addition, comprehensive lab experimental studies are explored, along with a suite of advanced flow diagnostic techniques, a detailed overview of the improvements, and the advantages and disadvantages of state-of-the-art ice mitigation strategies. This new addition to the Wind Energy Engineering series will be useful to all researchers and industry professionals who address icing issues through testing, research and industrial innovation.